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Unlike the previous investigation of the sufficient conditions for the convergence of minimax solutions of singularly perturbed 
Hamilton-Jacobi (H-J) equations, a typical example of which would be the Bellman-lsaacs (B--I) equations, convergence 
conditions are formulated not in terms of auxiliary constructs [1], but in terms of the Hamiltonian, the boundary function, 
assumptions regarding their continuity, Lipschitz continuity, etc. In addition, an asymptotic equation is derived, that is, a H-J 
equation whose minimax solution is the limit of solutions of H-J  equations in which some of the momentum variables have 
coefficients whose denominators contain a small parameter which is made to approach zero. © 1999 Elsevier Science Ltd. All 
fights reserved. 

The area of application of investigations of singularly perturbed H-J  and B--I equations comprises 
problems in optimal control theory and differential games, whose dynamics involve both "fast" and 
"slow" motions, as well as problems with Lipschitz-continuous controls, where the Lipschitz constants 
may be as large as desired (see [4--14], as well as the references listed there). In such problems, the 
value function of a singularly perturbed B-I equation is a minimax (and/or viscosity [9-11]) solution, 
and problems of the existence and construction of asymptotic solutions reduce to the existence of the 
limit of the value functions and the corresponding unperturbed problem when the velocity of the "fast" 
motions or the Lipschitz constants tend to infinity. 

1. F O R M U L A T I O N  OF THE P R O B L E M .  
S U F F I C I E N T  C O N D I T I O N S  FOR C O N V E R G E N C E  

Consider the following Cauchy problem Pe for a singularly perturbed H-J  equation (e E (0, e.) is a 
small parameter) 

aut( t ,x ,  y ) l  at + Ht( t ,x ,  y, Dxut,Dvu e) = 0 

(t, x, y) ~ G O = (0, 0) x R n x R t 

(1.1) 

ue(O,x,y) = o(x), x e R",y  e R t (1.2) 

It is assumed that the co_m_ponents of the vector DyU~--the momentum variables--appear in the expres- 
sion for the Hamiltonian/-/° with coefficients which contain the small parameter e in the denominator. 

As to the degree of smoothness of the initial data of problem 1:, it will be assumed that: 
B. 1. The function o(x) is continuous in R ~. 
B.2. The Hamiltonian He(t, x, y, p, q) is continuous in its domain of definition G = [0, 0] x R ~ x R t x 

R ~ x R t and satisfies the estimate 

I Ht(t 'x 'y 'O'O) l (1.3) 
sup < .o 

(r.x,y)eC (1+ II X II + II y II) 

B.3. The following Lipschitz condition holds with respect to the variablesp and q, for any (t, x, y) 
G , p ' , p "  ~ Rn, q ' , q "  ~ :t~ 

I H t (t, x, y, p', q') - li t (t, x, y, p", q") I <~ ~,t (x, y)(ll p" - p" II + I I E II q' - q" II) 

where ):(x,y): = (1 + llx II + IIY ll)Ix ~ and Ix ~ is a constant. 

(1.4) 
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B.4. A local Lipschitz condition holds with respect to the variables x and y 

I H t ( t , x ' , y ' , p ,q )  - H t ( t , x " , y " , p , q )  l 
< L ~ (1.5) 

(11 x'  - x" II + II y '  - y" II)((1+ II p II) + 1 / g(l+ II q II)) 

" wh f o r t e  [ O , O ] , p ~ R ~ , ~ t ~ , x ' , x " ~ B x ,  x ' ~  x " , y ' , y " ~ B r ,  y ' ~  y , e r e B x ~ R n ,  B r ~ t ~ a r e a r b i t r a r y  
bounded domains, L = Lt(Bx, By.) = const E (0, oo). 

We know [8-11] that problem 1 ~ (1.1), (1.2) does not, as a rule, have a classical solution, but conditions 
B.1-B.4 guarantee the existence and uniqueness, for every e > 0, of a generalized minimax (and/or 
viscosity) solution ~tt(t, x, y) [9-11]. 

We recall one of several equivalent definitions of a minimax solution, which will be used in our later 
constructions. 

Let S t be some non-empty set and let M ~ be a multi-valued mapping 

G x S e ~( t ,  x, y, s ')  ~ M e (t, x, y, s') c R" x R t x R (1.6) 

The pair (S t, M e) will be called a characteristic e-complex of Eq. (1.1) (or, briefly, a complex) if the 
following conditions are satisfied. 

1. For any (t, x, y) ~ G and s" ~ S t, the set M~(t, x, y, s') C R '/× R s × R is non-empty, convex and closed. 
For any (t, x, y, s') ~ G × S t and (f, g, r) ~ M~(t, x, y, s'), one has the estimates 

I l f l l<~  •e(x,y), I lgll~ < ~e(x,y) 

I r l <<- me(t,s ") (1+ II x II + II y U) 

where the quantity Zt(x, y) is as defined in condition B.3. For any s' ~ S t, the function t ,--> me(t, s') is 
summable over [0, 0] and the multi-valued mapping (t, x, y) ~ Me(t, x, y, s') is upper semi-continuous. 

2. For any ( t , x , y )  ~ G andp  ~.R n, q ~ R l 

(a) max min {(f, p) + (1 / eXg, q ) -  r :  ( f ,  g, r) e M e (t, x, y, s')} = 
$'~S t 

= Ht ( t , x , y , p ,q )  

(b) min max {(f, p) + (l / eXg, q}] - r : ( f ,  g, r) e M e (t,x, y, s') } = 
s" ES ¢ 

= H~(t ,x ,y ,p ,q)  

The set of  all complexes (S t, M ~) will be denoted by. _C,(/-/~). We not :  that the above conditions 
hold, for example, for the pair (S t, M ~) with S ~ = R n x R t, s = (sl, s2) ~ and 

M ~ (t, x, y, s I, s 2 ) = { ( f ,  g, r) E R n x R t × R: II f II ~< k t (x, y), 

II g II ~< kt(x,y), r = (f ,s,)+ (lle)(g, s2}- nt(t,x,y, st,s2)} 

where ~:(x, y) = (I + II x II + II Y ll)Ix t is as defined in the Lipschitz condition B.3, (t, x, y) ~ G, sl ~ R n, 
S 2 E  R / 

A pair (S t, M ~) will be called and upper (lower) characteristic e-complex of Eq. (1.1) if conditions 1 
and 2a (conditions 1 and 2b) hold. The set of all upper (lower) characteristic e-complexes will be denoted 
by C~'(/-/*) (C'~(/-/*)). 

Choose an arbitrary complex (S t, M*) ~ C(H e) and s' ~ S t. The symbol e - So[(t 0, x0, Y0, Zo, s') will 
denote the set of  absolutely continuous functions (x(.), y(.), z(.)): [0, 0] ~-~ R n × R ~ x R that satisfy the 
condition (x(t0), y(to), Z(to)) = (Xo, Y0, z0) and the differential inclusion 

(~(t), ¢~(t), ~(t)) ¢ Mt( t ,x ( t ) ,  y(t) ,s ')  (1.7) 

Definition 1. An upper (lower) solution of the H - J  equation (1.1) is a lower (upper) semi-continuous 
function G ~ (t, x, y) ~-> ut(t, x, y) ~ R satisfying the following condition: for any (to, x0, Y0, z0) ~ epi u t 
((to, x0,Y0, z0) e hypo ut), s' ~ S ~ and x ~ [to, 0] a trajectory (x(.),y(-), z(.)) ~ e - Sol(to, x0,Y0, z0, s') exists 
such that (x, x(x), y(x), z(x)) ~ epi u ~ ((x, x(x), y(x),  z(x))  ~ hypo ut). 

Here (S t, M ~) ~ C ~" (/-/*) ((S t, M ~) ~ C* (/-~)), e - Sol(t 0, x0, Y0, z0, s') is the set of  trajectories 
of the differential inclusion (1.7) that satisfy the condition (X(to), y(t0), Z(to)) = (Xo, Yo, Xo). 

The symbols epi u ~ and hypo u t denote the sets 
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{(t,x, y,z): (t,x,y) ~ G,z~ ut(t,x,y)} 

{(t,x, y,z) : (t,x,y) ~ G,z<~u~(t,x,y)} 

that is, the epigraph and hypograph, respectively, of the function u t. The definition of an upper (lower) 
solution does not depend on the choice of the complex (S t, M ~) ~ C T (/-/~) of the complex (S t, M ~) 
64 (/:)). 

Definition 2. A minimax solution of Eq. (1.1) is a continuous function G ~ (t,x,y) ~-~ ut(t,x,y) ~ R 
which is simultaneously an upper and a lower solution. 

In what follows we will assume that: 
B.5. The Hamiltonian/-~(t, x, y, p, 0) and conditions B.1-B.4, as well as conditions A.1 and A.2 

introduced below, depend continuously on the parameter E. 
A corollary of this assumption is that the minimax solutions ut(t, x, y) of problem I ~ depend 

continuously on the parameter E e (0, e.]. 
To guarantee the existence of a limit ofut(t, x,y) as e ,I. 0, we require the following structural conditions 

to hold. 
A.1. Suppose characteristic complexes exist which depend continuously on the parameter 8 

(0, e.], say (S~÷, Me+) ~ C 1" (H~), (St_, Mt-) ~ 64 (/-/~), and corresponding sets of attraction Y~ = Ye±(t, x, 
s~:) C R t with-the Following properties. 

(a) the sets ~ do not depend on the parameter  e, and for any S± e S±, the multi-valued mappings 
(t,x,y) ~-',M~._(t,x,y, s±) are locally Lipschitz-continuous in the Hausdorff metric, with Lipschitz constants 
L t satisfying condition B.4 

(b) for any (t,x) ~ [0, 0] x R  ~, s± ~ S±, the sets Yt±(t,x, s±) are closed and bounded, and moreover 

VyE Y~(t,x,s±): I lyl l~ ze(l+llxll) 

Z t = const, Ze~ (0,1~]; (1.8) 

(c) for any (t', x') ~ [0, 0] x R", (t ' ,  x") ~ [0, 0) x R n, s± ~ S±, the following Lipschitz conditions hold 

dist(Y~(t',x',s+), Y~(t",x", s±)) ~ vt(I t ' -  t" I+ II x'  - x" II) (1.9) 

v ~ - const, v t e (0, L ' ] 

where dist(Y 1, y2) denotes the Hausdorff distance between the sets y1 and y2 in a finite-dimensional 
space 

(d) for any compact sets D C [0, 0] x R ~ and Do C R t 

Do ~ U :+ (to,Xo,S+) 
(to,Xo)~D,s+ ~$+ 

[Do ~ l.J Y-~(to,Xo,S-)) 
(to ,zo )~D,s_ e$_ 

8(e) > exists such that 8(e) ,l. 0 as e ,I, 0, and for any (to, x0, Y0) ~ D × Do the following relationships 
hold 

where Y~ = Y~, (Y~ = ye_). 
A.2. The quantities 

dist(yt(t), Y~(t, xe(t),s')) <<- diam D o for t >~ t o 

ye(t)~ Ye(t, xe(t),s')) for t E[t o +5(5),0] 

Ht~(t, x, s) = max min{(f, s)- r: 
$+ ES:I: 

(1.10) 

(f, r) ~ co prx. z M~(t,x, Y~(t;x,s±),s+)} (1.11) 
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where prx, zM is the projection of the set M from (x, y, z)-space onto (x, z)-space, and coQ denotes the 
convex hull of the set Q, satisfy the following inequality for any (t, x, s) ~ [0, 0] x R ~ ×/V', E e (0, E.] 

I Ht+(t,x, s ) -  Ht_(t,x,s) l<~ ot(~) (1.12) 

where ct(e) $ 0 as e $ 0. The limit 

H(t,x ,s)  = li.m H~. (t ,x,s) = l i~  H~_(t,x,s) (1.13) 
~0 t J ,  tp 

will be regarded as the Hamiltonian in the following unperturbed Cauchy problem P 

~u(t ,x) l~t  + H(t,x,  Dxu) = O, (t,x) E (0,0)x R n 

u(O, x)---a(x), x E R" 

The main result of this paper is the following. 

(1.14) 

where, by B.3 

Ht( t , x , y ,p ,q )  = Ht ( t , x , y , p ,O)+( l l e )h t ( t , x , y , q )  

X/2~ >>- 0 : he (t,x, y,2Lq) = Xht(t ,x,  y,q) 

he (t,x, y,q) = (q,k~ (t,x, y)) + rlt (t ,x,q) 

I rle(t,x,q) l <~ ~ I.:(1+ II x II)II q II 

II kt( t ,x ,y)II  -< ~ ~t~(l+ II x II + II y II) 

(Ix ~ > 0 is the constant from condition B.3); 
(b) define sets 

F+~(t,x,q) = {g ~ R t :11 g II ~< ~ t t ( l +  II x II), (q,g) >~ rl~(t,x,q) } 

F_~ (t ,x,q) = {g ~ R t :11 g II ~< t~lxt(l+ II x II), (q,g) ~ rlE (t ,x,q) } 

Y~(t,x, q) c {Vy ° : - k t ( t , x , y  °) ~ F~(t,x,q)} 

and suppose that for any (t, x) e [0, 0] x R n, s__. e S± the sets l~±(t, x, s±) are closed and bounded, and 
moreover 

Vy~ Y~(t,x,s+): llyll~ < ~e(l+llxll) 

X ~ =const, XEE(0,tt t] 

(c) for any (t', x') ~ [0, 0] x R n, s± ~ S±, the following Lipschitz conditions hold 

dist (Y~ (t ", x', s± ), Y~ (t ", x", s+ )) ~< v t (I t" - t" I + II x" - x " II) 

v ~ = c o n s t ,  v t ~ ( 0 ,  L ~ ] 

(d) assume that for any compact set D C [0, 0] x R n a continuous mapping D ~ (t, x) -¢ Ke(t, x) I> 
/~(D) > 0 exists such that 

Theorem 1. Assume that conditions A.1, A.2, B.1-B.5 hold in the Cauchy problems 1~, e ~ (0, e.], 
for the singularly perturbed H - J  equation (1.1). Then the minimax solutions uE(t,x,y) of these problems 
converge as e $ 0, (t, x, y) e G to a minimax solution u(t, x) of the unperturbed problem P uniformly 
in any compact sets D C [0, 0] x / ~ ,  Do C R/. 

Condition A.1 is not particularly easy to verify. In what follows we will assume a more convenient 
condition: 

A. 1". Suppose that for any (t, x, y, p, q) e G x / ~  x R t 
(a) the following representation holds 
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Vy ~ Y~ (t,x,q) 3y*e Y~ (t,x,q) : 

((y - y*), (k t (t, x, y) - k ~ (t, x, y*))) ~< - K t (t, x) II y - y* II 2 

* £ * £ * * 

mt.ax ( ( y -  y ), (k (t, x,y ) + g)) = - h  (t,x, y ,(y - y)) = 0 
g~F~ (t,x.q) 

217 

When condition A.1 is replaced by A.I*, the assertion of Theorem 1 remains valid, namely the following 
theorem holds. 

Theorem 2. Under  the assumptions A.I*, A.2, B.1-B.5, the minimax solutions u~(t, x, y) of problem 
Pq~ converge locally uniformly as e ,1, 0 to a minimax solution u(t, x) of problem P for all (t, x, y) ~ G. 

2. P R O O F  OF T H E O R E M  1 

We will show that conditions A.1 and A.2 are analogous to conditions 3 and 4 in [1] and guarantee 
the convergence of u~(t, x, y) to u(t, x). For clarity, all further arguments will be carded out for upper 
characteristic complexes and the corresponding sets of  attraction occurring in condition A.1. The 
analogous constructions and propositions for lower characteristic complexes are obtained by formally 
replacing the subscript "plus" by "minus". 

Suppose that (to, x0, Y0) ~ D x Do, z0 ~ R 1, e ~ (0, e,] and, in accordance with A.1, for s+ ~ S+, let 
I~+(t, x, s+) be sets of attraction relative to an e-characteristic complex (S+, Me+). Let (x~(-), y~(.), z~(.)) 

e - Sol(t0, x0, yo, z0, s+), s+ ~ S+, that is 

(Jct(t),~t(t),~t(t)) ¢ M~(t, xt(t),ye(t),s÷) 

(x'(to), Y'(to), z'(to)) = (xo,Yo, zo) 

(2.1) 

In what follows we will need the following fact from the theory of  differential inclusions (see [12]). 
Let (t, x, z) ~ Fi(t, x, z) C R n × R: [to, 0] × R" × R ~ 2 R" × R (i = 1, 2) be two multi-valued mappings 

with convex, compact, non-empty values, which are upper semi-continuous with respect to inclusion. 
Let x0 E R", z0 ~ R. Consider the differential inclusions 

(ki(t), ~i(t)) ~ Fi(t, xi(t), zi(t)), t ¢ [to,O] (2.2) 

(xi(to), zAto))=(xo,zo), ~= 1,2 

Denote the set of solutions (xi('), zi(')) of the ith differential inclusion (2.2) by Soli(t0, xo, z0). Then 
(see [12]) the following proposition holds. 

Proposition 1. For any solution (xi('), zi(')) ~ SOil(t0, x0, z0), a solution (x2(.), Z2(')) E 5012 (to, xo, z0) 
exists such that, for all t ~ [to, 0] 

l 

II wl( t ) -  w2(t) H~ ~ dist(Fj(x, x I (x), zl(x)) F2(X, x2(x), z2(x))dx, w = x, z (2.3) 
tO 

Thus, let us fix some solution (xt(-),y~(-), ze(-)) e E - Sol (t0,x0, z0, s÷), s+ e S+ and, using the function 
y~(.): [to, 0] ~ Do, construct a multi-valued mapping 

(t, x) ~-~ Y~(t, x, s+) c Y~(t, x, s+) (2.4) 

Y0" (t, x, s+) = {Yo e Yt+ (t, x, s+ ):dist(ye(t), Y+t (t, x, s+ )) --N Yt ( t ) -  YO II} 

It can be shown that for any s+ the mapping (t, x) ~ Y~(t, x, s+) is compact-valued and upper semi- 
continuous with respect to inclusion. But this means that the same properties will hold for the multi- 
valued mapping 

(t, x) ~ coprx,, M~(t, x, r~(t, x, s+), s+) (2.5) 

Now consider the differential inclusion generated by (2.5) 
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(~( t ) ,  ~( t ) )  ~ co pr,.~ M~(t, x~(t), ~( t ,  x~(t), s+), (2.6) 

x~fto)  = xo,  z~(to)  = z0 

By the theory of differential inclusions [12], a solution of (2.6) exists in [to, 0]. Let Sol~(t0, Xo, z0, s+) 
be the set of all such solutions (x~(.), z~(.)), and let Sole(to, x0, z0, s+) be the set of all solutions (x~(.), 
z~(.)) of the differential inclusion 

(.f, (t), Ze (t)) ~ co prx, , M+ ~ (t, xt (t), y+e (t, x, (t), s+), s+) 

xt(to)= Xo, ze(to)= Zo (2.7) 

Obviously 

Soil (to, Xo, Zo, s+) c Soft(t o, x o, Zo, s+) (2.8) 

For the selected trajectory (x~(.), y~(.), ze(.)) ~ e - Sol (to, Xo, Zo, s+) let us estimate the difference 
between (xe(t), z~(t)) and (x~(t), z~(t))---the point on the trajectoryx~(.), z~(.)) ~ Sol ~ (to,Xo, z0, s+) closest 
to (xS(.), z~(.)), where t ~ [to, 0]. 

By construction, this distance does not exceed the distance between (x~(t), z~(t)) and (X~o(t), z~o(t))-- 
the point on the trajectory (x~(.), z~(-)) ~ Sol~(to, Xo, Zo, s+) ,  closest to (x~( • ), z~(. )). 

Using Proposition 1, we obtain the estimate 

II x~(t)- x~(t) II<-II x. ~ (t) - x~(t) II -< [ It ~t(x) - ~(x) ~ dx~< ~ dist (pr x M~(x, xE(x), yZ (x), s+ ) 
to tO 

! 

pr x M** (x, x~('O, YoZ (x, x~('t), s+), s+))dx<~ ~ dist (pr x M.t (x, x*(x), y*(~), s+), 
tO 

pr, M+~('t, ~ x Xo(), Yo(X), s+))~, (2.9) 

! t 

II : ( 0 -  z~(t) I1<-II z E ( t ) -  z~(t) II -< ill P ( x ) - / ~ ( ~ )  II ax-< I dist (Prz M~(x, xe('t), Ye('O, s+) 
to to 

pr, M+~fx, x~fx), y~(x), s+))dx (2.10) 

where y~(. ):[to, 8] ~ y~o(t) ~ ~0(t, X~o(t), s+) is some measurable function, and by (2.4) 

II y~(t)- y~(t) II= dist (Yt (t), Y+ (t, x~(t), s+)) 

Taking conditions A.la,  A.lc  and the properties of the dist operation into consideration, we continue 
estimate (2.9) 

t 

II x'(t)- x~(t)II -< J Lqll x'(~)- x~(~)II + II Y'(~)- Y~ (~)II} dx<- 
to 

t 

~< 5 Lt{ll x~(x) - x~(x)II +dist(yt(x), Y~(x, xE(x), s+))+ 
tO 

t 

+dist (Y+*(% x~(x), s+), Y+e (x, x~(x), s+)} dx~ 5 L~{(I + v) 
to 

E g £ l~ U x E ('0 - Xo (x) II + dist (y (x), Y+ (x, x (x), s+ )) } d¢ (2.1 I) 

By condition A.ld, relationships (1.10) will hold for the fast variable y~(. ) of the selected solution 
(x~( • ), y*(. ), ze( • )) ~ ~ - Sol (to, xo, zo, s+), that is 

dist (y~ (t), Y~ (t, x ~ (t), s+))~< diana D o =. d o for t ~ to (2.12) 

y~(t) ~ Y+~(t, xe(t), s+)) for t ~ [to + 8(e), O] (2.13) 
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Using estimates of the Gronwall type, we deduce from (2.11) and (2.12) that for t ~ [to, to + ~(e)] 

: . ~  ,,< do toe O+v')S(~) (2.14) II x~(t)- ~o~.,,'~-~° - I) = re(e) 

where tp(e) $ 0 as e $ 0. From (2.11), (2.13) and (2.14) we deduce that for t e [to + 8(e), 0] 
Q 

IIx'(t)-x~(t)ll<.llx~(to+8(~))-x~(to+8(e))ll  + ~ L~( l+vt ) l lx t (x ) -x~(x) l ldx  (2.15) 
t o +8(e) 

II x' (t) - x~ (t)II<~ exp[ L~ (I + v ~)(t - t o - 5(e))] II x ' (to + 8(e)) - x~ (to + 8(E))II 

~< exp [L~(I + vt)(0 - t0)]tp(~) = p(e) (2.16) 

where p(E) $ 0 as e $ 0. A similar estimate is obtained for II z~(t) - Z~o(t) II. 
Summing up these arguments and, in particular, the remark that the above discussions apply both 

for the upper and lower characteristic complexes occurring in condition A.1, we conclude that the 
following proposition holds. 

Lemma 1. For any compact sets D and Do as in condition A.ld,  mappings (0, e.] ~-~ R+ x R+ : e 
((x(e), P(e)) exist such that ct(e) $ 0, p(e) $ 0 as e $ 0, and for any (to, Xo) E D, Yo ~ Do, Zo ~ R, s" = 
s+ ~ S+ (s' = s_ e S_), e E (0, e*], (x~( • ), y~(- ), ze( • )) ~ e - Sol (t 0, x0, Y0, z0, s,) a (x~(-), zE(-)) ~ Sol E (t 0, 
x0, z0, s') exists such that 

II x '  ( x ) -  x~ (x) U ~< p(e), II z c ( x ) -  z~ (x) I1~ p(E) 

for x e [to + 8(e), e] 

for x e [t o + 5(e), 0]. 

(2.17) 

Remark 1. Let G~(to, Xo, Yo, Zo, s') denote the attainable domain of system (2.1) at time x, and let G0(e)(to, Xo, z0, 
s') be the closed p(e)-neighbourhood of the attainable domain of system (2.7). Then condition (2.17) may be 
rewritten as 

(2.18) Pq.z GE (to, x, Xo. Y0, z0, s') c Gt ~t)(t0, x, Xo, z0, s') 

where p(e), the quantity defined in (2.16), is the same for all (t0,x0) e D, y0, e Do, z0 e R. 

Define functions 

u°t(t,x)= inf rain u t ( t , x , y )  
s+eS+ y~yt(t,x,s+) 

w°(t, x) = sup max wt(t, x, y) 
s_eS_ yeYt-(t,x,s-) 

(2.19) 

where ue(t, x, y) is an upper minimax solution of the singularly perturbed problem 1 ~ and we(t, x, y) is 
a lower minimax solution of problem 1 ~. Note that previously [1] the analogous operations min and 
max were considered on sets of attraction Y that did not depend on t, x, s~ and s_. Constructions like 
(2.19) are also used in [13]. By the theory of minimax solutions [9, 11], for any (t, x, y) ~ G, s÷ ~ S÷, 
s_ ~ S_ we have a non-empty intersection 

M~+(t, x, s+) c~ M~_(t, x, s_) ~ 0 

Using this property and the assumption (A.l*c) that the sets of attraction are Lipschitz-continuous, 
it is not difficult to show, by reductio ad absurdum, that for any (t, x, y) e G, s÷ e S+, s_ e S_ the 
corresponding sets of attractions from A.I* satisfy the condition 

Y~(t, x, s+)n ~(t, x. s_) ~ 0 (2.20) 

If we now set 
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v e(t, x, y) = we(t, x, y) = ue(t, x, y) 

in (2.19), where u~(t, x, y) is a minimax of problem P~, we can deduce from (2.20) that for any (t, x) 

0 _< 0 v t (t, x)-~w t (t, x) (2.21) 

L e m m a  2. For any (to, x0) ~ D, Y0 ~ Do, s+ ~ S+ (s_ e S_), z 0 = z~ >I ~°(t 0, x0) (z0 = zff ~< w°(to, Xo)), 
x ~ [to + 5(e), 0] points (x~, zg) ~ G~(~)(to, "c, Xo, z~, s÷) and (x*_, z*_) ~ G~(~)(to, % Xo, Zo, s_) exist such 
that 

* * • 0 * * 0 (x, x+, z+) e ep~ u • (x, x_, z_) E hypo w e 

The proof follows the same lines as that of Proposition 1 in [1]. 
Using the continuity of the initial data of 1 ~ with respect to e, we see that for all (t, x) ~ [0, 0] x R n, 

s+ e S÷, s_ ~ S_ the following convergence relations hold in the Hausdorff metric as e ~ 0 

r:~(t, x, s÷)~ r°(t, x, ~+) 

co prx. z Mrs(t, x, Y~: (t, x, s±), s±)l--~ Moo,  x, s± ) 

It follows from assumptions A. la  and A. lc  that for any s± ~ S± the multi-valued mappings 
(thx) ~ M~+(t, x, S±) are convex- and compact-valued and satisfy a Lipschitz condition with constant 
L ~ = lim~0L~(1 + v~). It follows from condition A.2 that the complexes (S÷, M~+), (S_, M°_) are upper 
and lower characteristic complexes, respectively, in an unperturbed Cauchy problem P, where the 
Hamiltonian may be represented in the form 

H(t, x, s) = max min {(f, s) - g :  ( f ,  g) E M°(t,  x, s+)} = 
$÷ ES+ 

= rain max{( f ,  s) - g :  ( f ,  g) e M°(t, x, s_)} (2.22) 
s_G$_ 

Modifying the scheme of the proof of Proposition 2 in [1], taking into account the non-stationary 
nature of the sets of attraction, we deduce the following fact. 

L e m m a  3. The function 

v ~(t, x) = lim inf v°t(t ', x') (2.23) 
~J,O, 0', x ' )~(t ,  x) 

is an upper minimax solution of problem P, and the function 

w#(t, x) = lira sup w°t(t ", x ')  (2.24) 
e,l,0, 0", x ' )~0 ,  x) 

is a lower minimax solution of problem P (1.14). 
It follows from the properties of upper and lower minimax solutions of problem P that for all (t, x) 

u #(t, x ) ~  w#(t, x) 

and it follows from condition (2.21) and constructions (2.23) and (2.24) that 

v #(t, x)<- w#(t, x) 

Thus, for all (t, x, y) ~ D x Do 

u #(t, x) = w#(t, x) = u(t, x) = li.m ut (t, x, y) (2.25) 
¢40 

It follows from the estimates obtained in Lemma 1 that the convergence in (2.25) is uniform in any 
chosen compact sets D C [0, 0] x R ~ and Do C R t. This completes the proof of Theorem 1. 

Remark 2. Using conditions A.1, (1.13) and B.5, we can derive the following representation for the Hamiltonian 
H(t, x, s) in the unperturbed problem P 
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H(t, x, s) = max min H°(t, x, y*, s, O) = nfin max H°(t, x, y. ,  s, 0) (2.26) 
s+¢S+ y*¢yO(t,x,s+) s_¢S_ y.~yO(t,x,s_) 

where H°(t, x, y, s, 0) = lim~ 0/~(t, x, y, s, 0). 

Remark 3. The proof of Theorem 2 reduces to verifying that the role of the admissible complexes in condition 
A.1 of Theorem 1 may be played by sets S+ = S_ = {(p, q) ~ R ~ × R t} and multi-valued mappings of the form 

(t,x, y)~, M~.(t,x, y ,p,q)={(f  ,g,r)¢ Rn ×Rl x R: 

Ilfll<~kt(x,y), g~kt(t,x,y)+F~(t,x,q), 

r=~f,p)-l-F(t,x, y,p, O)} 

(t,x, y)l--~ M~_(t,x, y, p ,q)={(f  ,g,r)~ Rn × Rl × R: 

Ilfll<~Ttt(x,y), g~ke(t,x,y)+Ft_(t,x,q), 

r = ~  p)-Ht(t,x, y,p, O)} 

Condition A.l*d implies an exponential estimate for the rate at which the "fast" components of the generalized 
characteristics approach the corresponding sets of attraction, so that condition A.ld holds. 

3. E X A M P L E S  

Conditions A.1, A.2, B.1-B.5 are satisfied, for example, in the model examples if [1]. 
For the first example, the upper characteristic complexes and corresponding sets of attraction satisfying condition 

A.1 are as follows: 

s+=q', S+=Q 

M+ t (t, x, yj, Y2, q') = co{(f(t, x, y~, Y2), h~(y~, p'), ~fy2,  q'), 

g(t,x, yl,y2)) : p" ~ P} 

Yt+ (t,x,q')= l~ ×Qe 

MOo, x, q') = col(/(t ,  x, p', q'), g(t, x, p', q')): p" ~ P} 

Y+°(t,x,q')= e × a  

where P~ and Q~ are closed e-neighbourhoods of the sets P and Q. 
In order to construct suitable lower characteristic complexes, we need only interchange the roles o f p '  and q' 

and P and Q in the constructions, leaving the sets of attraction as before. 
For the second example, the upper characteristic complexes and corresponding sets of attraction satisfying 

condition A.ld are as follows: 

s+ = I~, $+=B 

M~+(t, x, y, ~) -- col (f(t, x, y), I (~_ y), g(t, x, y)):~ E Y(t, x, I~)} 
E 

MO(t, x, I])= co{ (f(t, x, ~), g(t, x, ~)): ~ ~ Y(t, x, I~)} 

Y:.(t,x,~)= Y(t,x,~) ~, yO(t,x,~)= Y(t,x, f3) 

where Y(t, x, [3) ~ is the closed e-neighbourhood of the set Y(t, x, f3). 
To construct suitable lower characteristic complexes and sets of attraction, we need only interchange the roles 

of 13 and c~ and B andA, in the constructions. 

This research was suppor ted  financially by the Russian Founda t ion  for  Basic Research (96-01-00219 
and 96-15-96245). 
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